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ABSTRACT 

State-of-the-art velocity models poorly resolve the meter-scale structure of the 
earth’s crust, which play an important role in ground motion amplification as frequencies 
increase. Here, we analyze borehole velocity logs and shallow shear-wave velocity 
(Vs30) data in the Los Angeles basin to construct a statistical model of the small-scale 
heterogeneities for ground motion prediction purposes. Our analysis suggests that a von 
Karman distribution with Hurst numbers (ν) of 0.0 - 0.1, correlation lengths (a) of 50-150 
m, and standard deviations from the mean fluctuations around 5% characterize the data 
best. To quantify and validate the effects of the statistical distribution on ground motions 
we use finite-difference solutions to the 3D wave equation including frequency-
dependent attenuation. We simulate 0 - 2.5 Hz linear viscoelastic waves through 3D 
velocities structures derived from the Southern California Earthquake Center (SCEC) 
Community Velocity Model (CVM) SI-4.26 with a minimum S-wave velocity (Vs) of 
200 m/s. Our analysis shows that statistical distributions of small-scale heterogeneities 
with parameters constrained from data can amplify or de-amplify ground motions by up 
to a factor of two. However, small-scale scattering included in the wave propagation for 
the 2008 Mw5.4 Chino Hills, CA, earthquake, by superimposing the statistical models on 
the velocity model, improves the goodness-of-fit (GOF) between data and synthetics by 
only ~5%. A relation between the quality factor (Qs) and Vs of Qs/Vs~100-150 (Vs in 
km/s) provides the largest GOF values and best-fitting peak motion attenuation with 
distance when accounting for a scattering medium. Furthermore, we show that the 
majority of the scattering recorded in ground motions originates as path effects as waves 
propagate through the basins, as compared to local site-specific scattering. We also find 
lower-velocity sediments and the deep crust contribute approximately equally to the 
strength of the scattering recorded in ground motion records.  

The effects of the statistical distributions on the synthetic ground motions for the 
deep (~14 km) Chino Hills earthquake consist of highly incoherent and scattered 
amplifications and de-amplifications. On the other hand, we find that shallow sources 
located on the boundary to a sedimentary basin can generate bands of strong 
amplification aligned in the direction of the ray paths. The nature of these bands depends 
strongly on the incidence angle of the waves into the sediments. Moreover, this banded 
amplification pattern is absent for sources deeper than 1-2 km. These results imply that 
surface rupture on a range-bounding fault may generate different patterns of ground 
motion shaking along lines parallel to the fault as compared to profiles perpendicular to 
the fault.  

Our analysis shows that the statistical distributions of small-scale heterogeneities 
have only secondary effects on the misfit between data and synthetics for the Chino Hills 
earthquake. However, incorporating a Vs30-based geotechnical layer brings the ground 
motion metrics from the synthetics averaged with distance from the source closer to those 
from data by up to 20-50%. The largest overall improvement in GOF is obtained by 
increasing the moment for the Chino Hills event from Mw5.4 to 5.5, an adjustment within 
the uncertainty of the magnitude of the earthquake.  
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Final Technical Report 

INTRODUCTION 

Gaining a solid understanding of the expected range of ground motions from 
future large earthquakes is imperative so structures can be properly engineered to 
withstand this shaking. Local site effects can drastically amplify the ground motion from 
an earthquake, with prominent examples from the 1989 Loma Prieta earthquake in the 
Marina District of San Francisco and the 1985 Michoacan earthquake in Mexico City. As 
the capabilities of deterministic seismic wave propagation advance, characterizing the 
small-scale variation (from tens to hundreds of meters) of the near surface soil deposits 
becomes necessary in modeling site-specific amplifications. The variability in the site 
amplification is important for the design of lifelines such as bridges and pipelines, as 
these structures extend over considerable length parallel to the ground. Current velocity 
models (e.g. the Southern California Earthquake Center (SCEC) Community Velocity 
Model (CVM)-S 4.0 (Magistrale et al., 2000; Kohler et al., 2003), CVM-H 11.9 (Süss 
and Shaw, 2003), CVM-SI 4.26 (Lee et al., 2014) insufficiently resolve the small-scale 
variability known to exist in the earth’s crust. 
 

Due to data acquisition costs, it is not feasible to resolve the small-scale structure 
using direct measurements. Instead, the small-scale heterogeneities may be described by 
statistical distributions, such as von Karman auto covariance functions (1.1) with Fourier 
transform (1.2) 
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(Tatarski, 1961), as well as Gaussian auto correlation functions. Constraints on the 
parameters of the statistical parameters - the correlation length, a, Hurst exponent, ν, and 
standard deviation, σ - were obtained from sonic logs and digitized geological maps (e.g., 
Wu et al., 1994; Levander et al., 1994; De et al., 1994; Holliger and Levander, 1992; 
Holliger, 1996; Holliger, 1997; Dolan et al., 1998). These studies report Hurst exponents 
of 0.0-0.3 and correlation lengths between 60-160 m in the vertical direction (Holliger 
1996), and horizontal to vertical anisotropy (H/V) between ~2-5 (Holliger and Levander, 
1992; Wu et al., 1994). We note that ‘fractal dimension’ is sometimes used instead of 
Hurst exponent. Higher fractal dimensions represent more complexity in the detail of a 
fractal with a change in scale. It can be shown that D = E+1-ν, where E is the Euclidian 
dimension, i.e., a high fractal dimension corresponds to a low Hurst exponent. 
 

Other studies have assessed the statistical parameters based on wave propagation 
simulations. Frankel and Clayton (1986) and Hartzell et al. (2010) used ν=0.0 with a=5-
10 km and σ=5-10%. Olsen and Jacobsen included statistical distributions with ν=[0.5-
0.5], a=250 m and σ=5-10%. Imperatori and Mai (2013) used a Hurst exponent of 0.3 
with correlation lengths on the order of hundreds of meters to kilometers. Frankel and 
Clayton (1986) generated small-scale heterogeneities with three distinct autocorrelation 
functions, Gaussian, exponential (corresponding to ν = 0.5), and self-similar 
(corresponding to a ν = 0.0). By testing end-member cases of the von Karman 
autocorrelation function Frankel and Clayton (1986) provided constraints on ν estimates 
for the small-scale heterogeneities that fall in the range [0.0, 0.5] with a preferred value 
of 0.0. There is considerable variation in the autocorrelations used among the studies, 
reflecting the variable constraints from the underlying data. For example, the correlation 
lengths suggested from Frankel and Clayton (>10 km) were obtained using teleseismic 
sources, which provide limited constraints at near-field stations. Here, we validate the 
resulting statistical distributions of small-scale heterogeneities against strong motion data 
using 3D finite difference simulation of wave propagation. 
 

The simulation studies mentioned above focused on crustal-scale models, and in 
part due to computational limitations, did not include near-surface low-velocity material 
(LVM). Ignoring the near-surface LVM in these simulations was justified in part by the 
omission of anelastic attenuation. However, the presence of the LVM, the associated 
scattering, and attenuation parameters are critical for ground motion estimation. Previous 
studies have estimated intrinsic attenuation for S-waves (Qs) and P-waves (Qp) by 
matching simulations to strong motion data (e.g., Olsen et al., 2003; Graves and Pitarka, 
2010; Taborda and Bielak, 2013), where Qs is taken as a function of the local Vs, and Qp 
is proportional to Qs. However, these Qs –Vs relations may be biased by different 
(artificially imposed) minimum velocities for the sediments (often dictated by 
computational limitations). Moreover, by including small-scale velocity heterogeneities 
in the LVM, the associated scattering attenuation may redefine the parameters for 
intrinsic attenuation, which are usually estimated using smooth velocity models.  
 

In this study, we use a data set of shear-wave velocities averaged over the top 30 
meters (Vs30) and 38 P-wave (Vp) sonic logs to determine the parameters characterizing 
the small-scale velocity fluctuations in the Los Angeles Basin. We validate the results 



against strong-motion data from the 2008 Mw5.4 Chino Hills earthquake using 3D wave 
propagation simulation and engineering relevant quantitative goodness-of-fit (GOF) 
metrics based on Olsen and Mayhew (2010). This validation includes determining the 
values of Qs and Qp in the presence of scattering attenuation by small-scale 
heterogeneities. We then investigate the relative importance of seismic scattering from 
localized site effects within the sedimentary basin and along the entire path from source 
to surface record. Then, we examine the depth dependency on ground shaking caused by 
seismic scattering, as well as the nature of scattering for shallow versus deep seismic 
sources and their proximity relative to sedimentary basins. Finally, we analyze the 
improvements in GOF values from of adding a shallow geotechnical layer (GTL) to the 
velocity model as well as adjusting the moment of the event with a reasonable amount. 
 
SPATIAL STATISTICS OF LOS ANGELES BASIN 
 

A primary goal of this study is to understand the spatial statistics of the variation 
in the seismic velocity structure in order to accurately model strong ground motion from 
earthquakes.  Toward this goal we use variogram analysis on three separate data sets 
consisting of Vs30 measurements and borehole sonic logs, to estimate the parameters to 
model the small-scale variability for von Karman autocorrelation functions (Hurst 
exponent, standard deviations, and correlation length). 
 
Vs30 Measurements 
 

First, we analyze the horizontal variation of near-surface small-scale 
heterogeneities in greater Los Angeles. We compiled 639 Vs30 measurements from 
several sources shown in Fig. 1.  We used 350 measurements incorporated in the SCEC 
CVM-S 4.0 (Magistrale et al., 2000), 102 measurements from  (Louie, 2005; 2007), and 
187 measurements from Yong et al. (2013).  
 

Vs30 is defined as 
 

 ,                                                                  (1.3)    
 
where d is the layer thickness from the 1D profile below the site of interest, and Vs is the 
depth-dependent S-wave velocity. We analyze the Vs30 data in the time-domain using the 
classical estimate of semi-variance given by Matheron (1963) in Eq. 1.4.   
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This variogram estimator has a vetted history in geostatistics since its derivation and is 
frequently used in kriging algorithms where developing a model of spatial correlation is 
paramount. The factor of 2 appears in the denominator accounting for the double 
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representation of field values (x1, x2) and (x2, x1) in the summation. The estimate requires 
binning of the data to specify lag distances, and this estimate performs the best when 
there are near-equal representations of the data in each bin (N(h)). 
 

We can directly interpret the correlation length of the velocity structure given an 
estimate of the variogram, while we fit a model to the variogram to determine the Hurst 
exponent.  Here, we model the variogram using a power-law or fractional Brownian 
motion (fBm) form (Li and Lake, 2010; Mela and Louie, 2001), based on the results from 
previous studies (e.g. Wu et al., 1994; Holliger, 1996; Frankel and Clayton, 1986), see 
Eq. 1.5. The factor of 2 appears in the exponent because the autocorrelation scales as the 
square of the amplitude.  Following Eq. 1.5, the Hurst exponent can be estimated as the 
half-slope of the linear regression in logarithmic space.  
 
 

      (1.5) 
 

For the Vs30 measurements, the data are sparse and irregularly located. To 
account for this we assign a relatively large bin spacing of the variogram of 500 m. We 
restrict the Vs30 measurements to a 40 km x 40 km region located inside Los Angeles 
basin (resulting in 292 values used in the analysis) to maintain consistency with the sonic 
log analysis (see the following section). Also, to obtain a similar representation at all lag 
distances, we restrict the maximum lag to 30 km. Fig. 2 shows the horizontal variogram 
calculated from all of the analyzed Vs30 data. We interpret the correlation length of the 
heterogeneity in the Vs30 values to be approximately 5-10 km (where the variogram 
levels out), and the Hurst exponent to be ν = 0.33. This analysis provides an 
understanding of the correlation length of larger-scale basin features, expected to be 
captured by and included in the SCEC CVMs.  
 

While many of the Vs30 values are measured directly in boreholes, a significant 
number are obtained using inversion of surface wave data. The latter estimate tends to 
smooth the actual velocities, potentially resulting in biased (high) Hurst exponents, and 
(low) fractal dimensions. We therefore consider the Hurst exponent and correlation 
length estimated from the Vs30 values as an upper bound on the estimates of the true ν. 
While these Vs30 values do not provide enough small-scale resolution to accurately 
model the fine-scale spatial statistics present in Los Angeles basin they are consistent 
with Hurst exponents estimated from Levander et al. (1994) and the correlation lengths 
suggested by Frankel and Clayton (1986).  
 
 
Analysis of Borehole Logs 
 

In order to constrain the small-scale structure in Los Angeles basin, we require 
much more densely sampled data than that provided by Vs30 measurements, as discussed 
above. Velocity logs provide regularly and densely sampled direct measurements of in 
situ seismic velocities. The following section contains our analysis of velocity logs from 
the Los Angeles basin. 

 !γ (h) = ch
2ν



 
We introduce an alternative variogram estimate (moving window formulation) 

derived by Li and Lake (2010) to analyze the sonic log measurements. The moving-
window formulation (Eq. 1.6) provides an estimate utilizing all available data pairs at all 
lag distances, whereas other variogram estimates (such as the Matheron, 1963, method 
discussed above) provide less data pairs as observation distance increases. We use the 
moving window method for the borehole logs as it reduces the variance at large lag 
distances, but does not necessarily provide a more accurate estimate as compared to the 
Matheron (1963) estimate. 
 

  .                         (1.6) 
 
The moving-window variogram method is incorporated into an inversion routine to 
perform a search of the parameter space minimizing the chi-squared test for GOF 
between the model and the data in the deep borehole logs. Here, we assume that each 
borehole log is a realization of a single random field of velocity fluctuations representing 
the entire Los Angeles basin, and the statistics are stationary. These assumptions permit 
us to average the variograms together to reduce the variance, creating an expected 
variogram estimate for all of the deep borehole logs.  This expected variogram represents 
the observations used in our chi-square test. 
 

We pre-process each borehole log individually. First, we remove the depth-
dependent mean using a long-period median filter, which leaves us with the fluctuations 
around the mean. Then we use median filters with different window sizes to remove 
long-period trends (window length 100 m) as well as artifacts resulting from the down-
hole logging procedure (window length 5 m). We assume that the large spikes seen in the 
measurements are due to measurement errors resulting from either decoupling with the 
logging tool and the host rock or cycle skips, a phenomenon resulting in anomalously 
high transit times or low velocities. Fig. 3 shows the preprocessing method performed on 
one borehole log, namely apal1 located approximately 5 km north of Long Beach, CA, 
along with the moving-window variogram (Fig. 3c) estimate for this single borehole.  
 
 
Deep Borehole Measurements 
 

We acquired 38 borehole Vp sonic logs (Personal Communication, Shaw and 
Plesch, 2012) located throughout the Los Angeles basin, extending to more than 3 km 
depth and containing more than 300,000 measurements. Fig. 4 shows the locations of the 
boreholes. Some logs are missing sections of data, and these values are removed from the 
resulting logs, since variograms do not require the data to be evenly spaced. Due to the 
relatively large number of boreholes represented here, we assume that these boreholes 
provide a representative sample of the spatial statistics in Los Angeles basin.    
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Before performing the inversion on the data, we carry out a sensitivity test of the 
processing parameters. The left panel in Fig. 5 shows the variation in estimated 
parameters as a function of the window size of the median filter. The inset shows the 
smoothed log apal1 from Fig. 3 for different median filter dimensions plotted against the 
un-processed log (gray). The right panel shows the calculated variograms with different 
filter dimensions.  
 

For the inversion, we first computed the expected variogram estimate for the Los 
Angeles basin from the geometric mean of the 38 individual variograms estimated from 
the sonic logs with the mean removed. After a suitable estimate for a combined Los 
Angeles variogram was obtained, we performed Monte Carlo simulations with 10,000 
realizations of each combination of parameters for the von Karman autocovariance 
function.  We then estimated variograms from the 10,000 realizations and computed the 
geometric mean to produce the expected synthetic variogram estimate. The synthetic 
variogram estimate was then compared with that from the borehole data. The best fitting 
model corresponds to a minimized chi-square GOF between the model and data. 
 

The final inversion results for the synthetics and the modeled data are shown in 
Fig. 6. Our results show that a model with von Karman parameters ν=0.05 and a=50 m 
best replicate the data, while the ranges ν=0.0-0.1 and a=50-150 m are consistent with the 
data within the uncertainty. We directly estimate the standard deviation from the mean 
for each borehole log as ~5±2.5%. A comparison to the classical variogram estimate by 
Matheron (1963) shows that the smoother estimate using the moving-window variogram 
provides a more accurate input for our inversion of the data. Also, as a quality check on 
the analysis of the entire suite of logs, we estimate the variogram from the apal1 log 
using the Li and Lake (1994) method (Fig. 3c) assuming a fBm model. We estimate the 
Hurst exponent to be approximately 0.01, and the correlation length to be approximately 
75 m, consistent with the results for the ensemble of sonic logs. 
 

As the borehole data typically represents a suite of geological formations with 
different characteristics, we searched the data set for any depth-dependence of the Hurst 
exponent, correlation length, and standard deviation. Fig. 7 shows the moving-window 
variogram applied to the Vp ensemble data separated into 500 m depth bins. The results 
indicate no significant depth dependence in the variograms, and we conclude that treating 
the statistics with an anisotropic single-fractal model is sufficient to replicate the first-
order effects of small-scale heterogeneities on the data.  
 
 
GROUND MOTION SIMULATIONS 
 

In the following sections we examine the scattering effects generated by statistical 
distributions of small-scale heterogeneities, and address the relative contribution of site 
effects and scattering along the path, scattering effects in the shallow sediments versus 
the entire model domain, and differences in the nature of scattering as a function of the 
depth of the source.  
 



Modeling Small-Scale Heterogeneities 
 

We generate the small-scale heterogeneities in the frequency domain using the 
following form for the amplitude portion of the power spectrum for 3D: 
 
  

  ,                                         (1.7) 
        

where k is the magnitude of the wave number computed as , and P0 is a 
constant. We generate a normally distributed random field, and tune the amplitude 
spectrum according to Eq. 1.7, while leaving the phases random.  This produces a power-
law distribution of the power spectrum, as well as the time-domain autocorrelation 
function.  We simulate anisotropy by stretching the velocity model with a horizontal-
vertical anisotropy ratio and resample the resulting grid in the frequency domain to 
preserve the power spectrum of the original domain. This distribution can then be 
superimposed on existing 3D velocity models for southern California, which already 
contains longer-wavelength variation in the crust. We perturb both Vp and Vs (in terms of 
slowness, in order to preserve travel times) as well as densities by the same amount, in 
lack of more accurate constraints. However, tests indicate that the first-order effects on 
the ground motion are rather insensitive to these choices. Fig. 8 shows depth-sections (z 
= -160m), a cross-section, and 1D depth-profile from select locations in the Los Angeles 
basin for the SCEC CVM-SI 4.26 superimposed with a statistical distribution generated 
from the parameters constrained in our data analysis.  
 
 
Comparing Synthetics and Data 
 

In addition to a visual check of the similarities and differences between synthetics 
and data we use a series of GOF metrics to obtain an objective comparison. Here we use 
a subset of the metrics proposed by Olsen and Mayhew (2010), namely peak ground 
velocity (PGV), peak ground acceleration (PGA), and cumulative kinetic energy (CKE). 
Moreover, we calculate two additional GOF metrics Arias Intensity (AI, Arias, 1970) and 
the integral of the one-sided envelope of the seismogram. We calculate the AI as 
 

  ,      (1.8) 
 

which has been found to provide a fairly reliable parameter for the shaking required to 
trigger landslides, Arias (1970). Here, Td is the total duration of the seismogram. We 
chose these metrics as they are expected to be sensitive to the scattering effects from 
small-scale heterogeneities.  
 

We compute GOF following Eq. 1.9  
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where x and y are selected metrics. To obtain a final GOF score for each model, we first 
compute the score for each component at each individual station. We average across the 
components to obtain a GOF score for one particular station followed by an average of all 
the stations to obtain a simulation average.  In some cases, we use vector magnitude 
across all three components. Scores range from 0 to 100, where 100 indicates a perfect 
fit. Following Olsen and Mayhew (2010), as well as Anderson (2004), we use the 
following classification of the GOF values: 80-100 - excellent fit, 65-80 - very good fit, 
45-65 - fair fit, and 35-45 - poor fit. We consider anything below 35 as a very poor fit.  
 
Modeling Parameters for the 2008 Mw5.4 Chino Hills Event 
 

    In order to minimize the interference from finite fault effects on the desired 
scattering in the surrounding medium we choose a relatively small earthquake source, 
namely the 2008 Mw5.4 Chino Hills event. While the importance of scattering is expected 
to increase with frequency and distance from the source, we simulate the majority of our 
tests for frequencies up to 2.5 Hz in a 56 km by 40 km by 24 km model domain including 
part of the Los Angeles basin, San Gabriel basin and part of Chino basin, due to 
computational limitations (Fig. 9). We incorporate a finite-fault source model from Shao 
et al. (2012) consisting of 140 subfaults based on a kinematic source inversion. The 
statistical model is added to the CVM everywhere except within a spherical region 
around the source of radius 5 km in order to preserve the moment of the source for 
different small-scale perturbations in shear moduli. We use a constant grid spacing of 
16m and a time step of 0.001s, for a total of 100 seconds of wave propagation. Each 
simulation used 13,125 processors on the Blue Waters Supercomputer at NCSA for a 
total of 6.5 wall clock hours (Table 1). We use AWP-ODC (Cui et al., 2010), a fourth-
order staggered grid finite difference solution to the 3D elastic wave equation to simulate 
wave propagation. The code includes frequency-dependent attenuation (Withers et al., 
2013) parameterized as Qs(f)=Qs0f0.6, with Qs0 constant below 1.0 Hz. We use the 
exponent n=0.6 for the power law as an average from the data constraints found by Song 
and Jordan (2013) for southern California. The representation of the earth’s crust is 
provided by the SCEC UCVM package (Gill et al., 2014) using the CVM SI-4.26 
velocity model (Lee et al., 2014). This particular model provides the most up-to-date 
representation of the Southern California crust including results from boreholes, 3D 
tomography, and full-waveform inversions. 
 
Sensitivity Testing of the Statistical Models 
 

In the following, we present the results of sensitivity tests on the ground motion 
synthetics for five parameters controlling the scattering from the small-scale 
heterogeneities: Hurst exponent, correlation length, standard deviation, seed number, and 
the horizontal-to-vertical anisotropy factor. The tests are conducted using the Chino Hills 
earthquake source, using Qs= Qs0f0.6 with Qs0=100Vs (Vs in km/s), followed by analysis 

GOF = 100erfc[NR], where NR = 2 x − y
x + y



of the effects of varying Qs0. We then examine the relative scattering contributions from 
the immediate area around the site, the sedimentary basin, and the underlying crust. 
Finally, we explore the scattering effects from the depth of the source and its proximity to 
a basin boundary. 

 
Effects of Parameters of the Statistical Distributions 
 

Fig. 10 shows horizontal slices of Vs in the 3D crustal model including the small-
scale heterogeneities. Figs 11-12 show comparisons of 0-2.5 Hz waveforms and 
cumulative kinetic energies for six select stations in the model domain (LTP, RUS, SRN, 
STS, FUL and PSR). These stations sample different propagation distances and basin 
depths to provide a representative sample from the Los Angeles basin. We find that the 
Hurst exponent has little effect on the ground motions. Anisotropy of the small-scale 
heterogeneities has a small-to-moderate effect on the energy arriving at the stations, with 
higher energies for the larger anisotropy, because of the greater scattering in such model. 
Depending on the specific station, the correlation length can provide a greater variation of 
ground motions. We find lower peak ground motions for a = 5000 m as compared with a 
= 150 m which can be explained by the 3D velocity structure provided in the SCEC 
CVM-SI 4.26. In other words, the correlation length can be thought of the as the size of 
the heterogeneities. Here, the 5 km-scale heterogeneities are accounted for by the 
underlying velocity structure from the CVM, leaving the statistical distribution with 
a=150 m (as constrained by data, see section Deep Borehole Measurements) for the 
small-scale heterogeneities absent in the CVM.  

 
The standard deviation parameter is a measure of the fluctuations of the 

heterogeneities from the mean background model, controlling the ground motion 
amplification along the wave propagation path. While the effect is relatively large, 
doubling the standard deviation from 5% to 10% does not necessarily cause peak motions 
and energy twice as large. In fact, in some cases (STS), the increase in standard deviation 
actually reduces the synthetics. As pointed out by Hartzell et al. (2010), this is due to a 
modified ray path through the medium, which can decrease the scattering. Finally, the 
seed number controls the spatial locations of the small-scale heterogeneities, creating a 
variance between the different realizations of the statistical model. The relatively large 
variation in ground motion energy at the 6 sites for different seed numbers (largest at 
FUL) implies that ensemble averages are needed for ground motion estimation when we 
incorporate statistical descriptions of the small-scale heterogeneities.  We find that 5 or 
more models provide a satisfactory reduction in variance toward characterizing the 
expected ground motions through random scattering media. 
 
Low-frequency Anelastic Attenuation 
 

While more complicated representations of Q have been proposed (e.g., Taborda 
and Bielak, 2013) we aim at estimating the optimal linear long-period relationship 
between Qs0 and Vs in this study. A widely used linear relation is Qs0/Vs (km/s) = 50 
(e.g., Graves and Pitarka, 2010). Here, we test the relations Qs0/Vs = 50, 100, and 150, 
with a power law exponent of 0.6 for frequencies higher than 1 Hz (constrained by Song 



and Jordan, 2013), and discuss the resulting GOF using 110 strong-motion stations. The 
simulations use the Chino Hills earthquake source in a model consisting of random 
perturbations from a von Karman model with parameters ν = 0.05, a = 150 m, σ = 5%, 
and H/V = 5 superimposed on SCEC CVM-SI 4.26. Figs. 13-15 show ensemble averages 
(5 realizations) of the simulations relative to data as a function of distance from the 
source as well as an interpolated map of the corresponding GOF for PGA, PGV, CKE 
and AI. The results for Qs0/Vs = 50 (Fig. 13) have an average GOF score of 29 (‘very-
poor’). We see good fits in close proximity to the source (<15 km), with a rapid decay in 
GOF with further distance. Qs0/Vs = 100 (Fig. 14) generates improved fits and distance 
trend, while still under-predicting the peak ground parameters.  The model average GOF 
of 40 falls in the ‘poor’ category, with good fits at many stations, even at far distances 
from the source.  The model using Qs0/Vs = 150 (Fig. 15) has a better overall GOF score 
of 43 and good distance trend, but reduces some ‘excellent’ stations to ‘average’ and 
‘poor’ scores close to the source. Fig. 16 compares synthetic with observed seismograms 
and cumulative kinetic energies at three representative basin sites for the three attenuation 
tests.  
 

Figs. 13-16 show that our simulations under-predict the peak ground parameters 
(PGA, PGV, CKE, and AI). This can be attributed to an inadequate source description or 
material model to properly accommodate high-frequency seismic wave propagation. Our 
results suggest that the commonly used relation Qs0/Vs = 50 may generate too strong 
attenuation for southern California, as least when considering the Chino Hills event. It is 
also clear that ensembles of statistical distributions of small-scale heterogeneities with 
parameters constrained from data can only account for a small fraction of the misfit 
between data and synthetics for the Chino Hills earthquake. 
 
 
Site Versus Path Effects 
 

It is well known that strong ground motions are strongly affected by the variation 
of near-surface low-velocity material (e.g., Anderson et al., 1996; Day, 1996; Boore and 
Joyner, 1997). For this reason we examine the contribution to the site effects from the 
statistical distributions of small-scale heterogeneities superimposed on the CVM-SI4.26 
for the Chino Hills event. Particularly, we use simulations with the top 200 meters of the 
ground unperturbed by the statistical models and compare to results from simulations 
with heterogeneities added in the entire domain (Fig. 17).  We see only small differences 
in the GOF estimates for the two models, with the model including small-scale 
heterogeneities (ν=0.05, a=150m, H/V=5, σ=5%, seed=1) throughout the entire domain 
providing slightly better fits on average. The small-scale heterogeneities in the upper 200 
m account for amplifications and de-amplifications of up to 50%, as measured by the 
cumulative kinetic energy. The differences appear in very isolated and scattered 
locations, consistent with the observations of site effects from ground motion 
observations. However, the relatively small differences indicate that a majority of the 
scattering comes from the path of the seismic waves from the source location, as opposed 
to the immediate area around the site.  

 



Depth-dependence of Small-scale Heterogeneities 
 

We now examine the relative contribution of scattering from the near-surface 
low-velocity basin sediments using ensemble averages. Fig. 18 shows the results from 
simulations including statistical heterogeneities (ν=0.05, a=150m, H/V=5, σ=5%, 
seed=1) added to the entire material model as well as only to sediments with Vs < 1500 
m/s. For this particular model, there is very little difference in GOF between data and 
simulations. The model including heterogeneities in the entire basin (average GOF = 41) 
shows marginally improved fits across the entire model as compared to that for the model 
including small-scale heterogeneities for Vs<1500 m/s (average GOF = 39).  However, 
the ratio between the cumulative kinetic energy for the two models varies by up to 50% 
(Fig. 18c). These results show that roughly equal contributions of the energy partitioned 
by crustal scattering originate in the lower velocity sediments and the underlying crust. 
 
 
Depth-dependence of source 
 

Olsen and Jacobsen (2011) explored the scattering from a shallow (0-5 km) SH-
wave source horizontally and vertically incident onto a 1D basin structure with a 
statistical model of small-scale heterogeneities superimposed. The shallow horizontally 
incident source generated banded patterns of amplification radiating from the source into 
the basin, with amplification factors up to 4 compared to a reference model without the 
small-scale heterogeneities. While intriguing, these banded amplification patterns were 
generated using simulations with a somewhat unphysical earthquake source impinging on 
a simplified (square) basin model with the statistical model superimposed. Here, we 
further explore these results using a small shallow source on the boundary of the basin 
and surrounding rock. This model is meant to represent a small section of surface rupture 
on a range-bounding fault (e.g., San Andreas fault by the San Bernardino basin). Fig. 19 
shows ratios of PGVs obtained from simulations with and without statistical distributions 
of small-scale heterogeneities generated by the parameters constrained by data, simulated 
in the same domain used for our Chino Hills modeling.  

The results show that the bands of amplification are generated independently of 
the focal mechanism (including that for Chino Hills and pure strike-slip and dip-slip 
mechanisms) of a small near-surface (depth of 32 m) source located at the boundary of 
the basin sediments and rock, although the patterns of the bands change. However, when 
the shallow source is moved a few km away from the sediment-rock boundary, and for 
deeper sources, the bands of amplification deteriorate. This is likely caused by the 
breakup of the main wave front, before the interaction with the sediment-rock boundary. 
Our results imply that surface rupture on a range-bound fault (e.g., the San Andreas fault 
by the San Bernardino basin) may generate different patterns of ground motion shaking 
along lines parallel to the fault as compared to profiles perpendicular to the fault. 
 
 
 
 
 



Additional Causes of GOF Misfit for Chino Hills 
 

The tests described above show that while the statistical models of small-scale 
heterogeneities can generate localized strong amplifications and de-amplifications of the 
ground motions, they cannot explain the discrepancies to data for the Chino Hills event, 
as measured by PGVs, PGAs, CKEs and AI. In the following, we perform two additional 
tests, without including statistical models, to try to explain the discrepancies.  
 
Effects of a Vs30-derived GTL 
 

Ely (2010) proposed to add a GTL, derived from Vs30 measurements (Wills and 
Clahan, 2006) to the SCEC CVMs, in order to make up for insufficient resolution in the 
near-surface regions of the velocity models. Figure 20 shows comparisons of PGVs, 
PGAs, CKE and AI for results with and without the GTL. In general, the GOF values 
tend to increase (up to 20% for PGVs and PGAs, and up to 50% for CKE and AI) when 
the GTL layer is included. The average GOF for the metrics is increased by 3% when the 
GTL is included. No statistical models are included in these results. 
  
 
Source Magnitude 
 

The finite fault description of the Chino Hills event from Shao et al. (2012) 
corresponds to a moment release of 1.58 1017 Nm, in agreement with the USGS Centroid 
estimate and corresponding to Mw5.4. However, considering that estimates of source 
moments can vary by up to a factor of two, we have explored how moment increases by 
25% (Mw5.50) and 50% (Mw5.55) relative to that provided by Shao et al. (2012) affect 
the GOF for Chino Hills (Fig. 21). It is clear that an increase in the moment of at least 
25% but less than 50% increases the GOF by an amount much larger than was the case 
for the statistical models of small-scale heterogeneities.  
 
 
Conclusions 
 

We have used Vs30 data measurements and borehole sonic log data to constrain 
the parameters describing statistical distributions of small-scale heterogeneities in the Los 
Angeles basin. Our results show that the von Karman parameters most representative of 
the velocity variability are ν = 0.05 - 0.1, a = 50 -150 m, H/V = 5, and σ= 5±2.5%. The 
parameters ν and a are primarily constrained by inverting 38 borehole logs located 
around the Los Angeles area, as the Vs30 data provide limited resolution. We estimate σ 
by directly computing the standard deviation of the velocity with respect to the mean of 
the each borehole, and averaging over the entire basin. We lack the data resolution to 
properly constrain the horizontal-to-vertical anisotropy (H/V) but our findings are 
consistent with H/V = 5 based on previous studies (e.g., Holliger and Levander, 1992) 
and ground motion validation of the statistical models using wave propagation 
simulations. Moreover, these statistical parameters constitute an accurate data-driven 



model that can be used for high-frequency simulations of seismic wave propagation in 
Southern California. 
 

Next, we simulate 3D linear viscoelastic waves through random media with 
frequency-dependent attenuation using a 4th order staggered-grid finite-difference 
solution to the elastodynamic wave equation. We compare synthetic with observed 
seismograms at strong-motion stations in the Los Angeles basin, to gauge our 
understanding of wave propagation through realistic 3D velocity structures including 
small-scale heterogeneities. We find that the Hurst exponent has little effect on the 
ground motions. Increases in correlation length and horizontal-vertical anisotropy (from 2 
to 5) of the small-scale heterogeneities produce more scattering in the model, but do not 
necessarily result in more energy arriving at the station due to the complex nature of path 
effects. The standard deviation, constrained by the data to be 5% throughout the entire 
basin, has a large effect on the resulting ground motions. Finally, the seed number 
introduces an inherent variance on the resulting ground motions, which is caused by the 
spatial relocation of the velocity perturbations. Due to the random nature of the fractal 
distribution, care must be taken when comparing synthetics with observed seismograms. 
We recommend at least five simulations per ensemble to reduce the variance associated 
with differences due to random realizations of the statistical distribution.  
 

We find when including low shear-wave velocities (Vs<200 m/s) coupled with 
contributions from small-scale heterogeneities changes that the commonly used relation 
Qs0/Vs (km/s)=50 for southern California (Graves and Pitarka, 2010) may provide too 
strong attenuation of the waves. Based on select metrics (PGA, PGV, CKE and AI versus 
distance against strong motion data, we find improved GOF scores against strong motion 
data for Qs0/Vs (km/s) =100-150.  
 

In an effort to understand the contributions from the small-scale heterogeneities, 
we perform tests to address the following questions: (1) what is the relative contribution 
from site and path scattering effects, (2) is there a depth-dependence of the statistical 
model – does the majority of scattering occur near the earth’s surface or at source depths, 
and (3) what are the effects of the source location on amplifications/de-amplifications 
from crustal scattering?  We find that the small-scale heterogeneities in the upper 200 m 
account for amplifications and de-amplifications of up to a factor of two, as measured by 
the cumulative kinetic energy. The differences appear in very isolated and scattered 
locations, consistent with the observations of site effects from ground motion 
observations.  Furthermore, we find approximately equal contributions to the scattering 
from the basins and the underlying crust.  Thus, small-scale heterogeneities must be 
accounted for throughout the entire modeling domain.  
 

Finally, we find unique banded amplification PGV patterns generated by small-
scale heterogeneities when we introduce a source near the surface (z = -32m) at a 
basin/bedrock interface. The results show that the bands of amplification are generated 
independently of the focal mechanism (including that for Chino Hills, and pure strike-slip 
and dip-slip sources) although some characteristics of the bands change. Our results 
imply that surface rupture on a range-bound fault (e.g., the San Andreas fault by the San 



Bernardino basin) may generate different patterns of ground motion shaking along lines 
parallel to the fault as compared to profiles perpendicular to the fault. 
 

Our sensitivity simulations and validation for the Chino Hills event have revealed 
many details on shallow crustal scattering phenomena as well as constraints on 
parameters to model the resulting ground motions using statistical distributions. The 
small-scale scattering clearly cannot account for the misfit between data and synthetics 
for the Chino Hills event, which is more likely due to other deficiencies in the crustal 
model (e.g., lack of a GTL), and/or the source description (e.g., underestimate of 
moment, energy of higher frequencies). In any case, we expect that crustal scattering due 
to small-scale heterogeneities will play an increasingly important role in ground motion 
prediction as regional-scale simulations, at higher frequencies, become commonplace for 
physics-based seismic hazard analysis.  
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Figure Captions 
 
Figure 1.  Map showing the 639 Vs30 measurements collected for use in the geostatistical 
analysis. (Red) 350 measurements incorporated in the SCEC CVM-S 4.0 (Magistrale et 
al., 2000), (blue) 102 measurements from Louie (2005, 2007), and (green) 187 
measurements provided by Alan Yong (Yong et al., 2013). 

Figure 2.  Variogram estimated for the Vs30 measurements in the Los Angeles basin.  
The dashed green line shows the logarithmic regression used to estimate the Hurst 
exponent (ν = 0.33, corresponding to a fractal dimension of D = 1.67). Correlation 
lengths are estimated between 5 and 10 km. 

Figure 3 a) Vp sonic log (gray) with long-period 100 m median filter (black), and 5 m-
smoothed log (red). b) De-trended fluctuation profile (blue) generated by subtracting the 
long-period median filter (black) from the red and gray logs in a), and used to estimate 
variograms. c) Variogram estimate from the fluctuation profile (blue) of the apal1 
borehole shown in b). The fluctuation profile (blue) becomes shorter due to edge effects 
from the median filter. The dashed green line is the logarithmic regression used to 
estimate the Hurst exponent. We estimate the correlation length to be between 50 and 80 
m, and ν=0.01. 

Figure 4. Map showing 38 deep borehole locations within the Los Angeles basin. 

Figure 5. (Left) Sensitivity of the median filter applied to the sonic logs (gray, before 
filtering, and red, after filtering) on the estimates of the von Karman parameters.  As the 
filter dimension increases, the resulting sonic log becomes smoother, increasing the Hurst 
exponent estimates while decreasing the estimate of the standard deviation. (Right) 
Variograms plotted for different filter sizes.  Note that the filtering has little effect on 
estimates of the correlation lengths. 

Figure 6. Inversion results for best fitting von Karman parameters. Dashed lines show 
variogram estimates using the classical estimate of Matheron (1963). The inset shows one 
realization from the best fitting model trend plotted against the borehole data.  

Figure 7.  Depth-dependent analysis for the 38 analyzed Vp boreholes in the Los Angeles 
basin. We see little variation in the statistical parameters at different depth intervals 
indicating there is no significant depth dependence of the von Karman parameters. 

Figure 8. Random perturbations from the von Karman model with parameters ν = 0.05, a 
= 50 m, σ = 5%, H/V = 5 superimposed on SCEC CVM-SI 4.26. (a) Depth slice at 160 m 
depth, (b) cross-section taken at A-A’, and (c) profile extracted at the red circle in (a). 
Velocities are listed in (m/s). Note in b) that the perturbations are excluded from the 



source region to preserve the moment released during the earthquake. The star depicts the 
hypocenter for the Chino Hills event.  

Figure 9. Topographic map showing the focal mechanism and simulation domain 
(rectangle, 56 km x 40 km x 24 km) for the 2008 Mw5.4 Chino Hills earthquake. Gray 
lines depict major freeways, and red lines are faults in the greater Los Angeles area. 

Figure 10. Depth slices taken at z = -160m in the CVM-SI 4.26 superimposed with 
various statistical models. We vary the von Karman parameters across the defined 
parameter space from previous studies. Contour lines show Vs = 2500 m/s isosurface 
plotted in 2 km intervals.   

Figure 11. Velocity waveforms and cumulative kinetic energy for synthetics and data at 
stations seismograms compared with data record at three stations (left) RUS, (center) 
LTP, and right (SRN). The following models from Fig. 10 were used: top row (b) and (c), 
second row (a) and (d), third row (f) and (a), fourth row (a) and (e), and bottom row (a) 
and (g). 

Figure 12. Same as Fig. 11, but for stations (left) STS, (center) PSR, and (right) FUL. 

Figure 13. Test of the influence of reference Qs for the GOF. Comparison of (a) PGV, (b) 
PGA, (c) CKE, and (d) AI versus distance for ensemble averages (blue lines) from 
simulations of the Mw5.4 Chino Hills earthquake using anelastic attenuation defined as 
Qs0/Vs=50 (Vs in km/s) and Qp0=2Qs0 to data (gray lines, with average in black). The 
simulations were carried out with a von Karman distribution of the small-scale 
heterogeneities with ν = 0.05, a = 150 m, σ = 5%, H/V = 5 superimposed on SCEC 
CVM-SI 4.26. The shaded regions show the variance of the different seed numbers. e) 
GOF score averaged for all four metrics. We see decent fits close to the source, with very 
poor fits at further distances from the source.  

Figure 14.  Same as Fig. 13, but for anelastic attenuation defined as Qs0/Vs=100. All 
metrics are under-predicted at distances greater than about 10 km from the source. 
However, we see generally better fits at farther distances, as compared to the results for 
Qs0/Vs=50 (Fig. 13). 

Figure 15. Same as Fig. 13, but for anelastic attenuation defined as Qs0/Vs=150. The fit is 
improved as compared to the results for Qs0/Vs=50 and 100, in particular at distances 
from the source larger than 15 km (Figs. 13-14).    

Figure 16. Influence of reference Qs on seismograms and cumulative kinetic energy for 
(a) deep basin site LTP, (b) shallow basin site RUS, and (c) hard rock site SRN for 
simulations shown in Figs. 13-15. 

Figure 17. GOF (CKE) for the Chino Hills source in the CVM-SI4.26 including small-
scale heterogeneities (ν=0.05, a=150m, H/V=5, σ=5%, seed=1). (a) Small-scale 
heterogeneities added to where Vs < 1500 m/s, and b) in the entire model domain. (c) 
Ratios of CKE between a) and b), generating up to 50% variation between the 
simulations. (d) Comparison between cumulative kinetic energy for data (gray, smoothed 
in black), simulations with no heterogeneities added (green), simulations with the 



heterogeneities added where Vs < 1500 m/s (blue), and simulations with heterogeneities 
added everywhere. The star depicts the epicenter of the Chino Hills event. 

Figure 18. GOF (CKE) for the Chino Hills source in the CVM-SI4.26 including small-
scale heterogeneities (ν=0.05, a=150m, H/V=5, σ=5%, seed=1). (a) Small-scale 
heterogeneities added everywhere except the top 200 m, and b) in the entire model 
domain. (c) Ratios of CKE between a) and b). (d) Comparison between CKE for 
simulations with no heterogeneities added (green), simulations with the heterogeneities 
added where Vs < 1500 m/s (blue), and simulations with heterogeneities added 
everywhere. The star depicts the epicenter of the Chino Hills event. (d) Comparison 
between cumulative kinetic energy for data (gray, and smoothed in black), simulations 
with no heterogeneities added (green), simulations with the top 200 m unperturbed (blue), 
and simulations with heterogeneities added everywhere (red). 

Figure 19.  Maps of PGV ratios between results from simulations with and without 
statistical models added using hypothetical sources in the Chino Hills model domain, to 
explore the effects of small-scale heterogeneities on near-surface ruptures. a) Pure 
horizontal strike-slip source at z=-16m directly on the interface between the basin and 
bedrock. b) Pure vertical dip-slip source at z=-16m directly. c) Chino Hills source 
mechanism in the same location as for a) and b). Panel d) pure strike-slip shear source 
located 4 km east of the rock-sediment interface. Notice the reduced banding caused by 
increasing the distance of the source to the rock-sediment interface. 

Figure 20. Effects of adding a Vs30-based GTL to the CVM SI4.26. Comparisons are 
shown for (a) PGV, (b) PGAs, (c) CKE, and (d) AI. Average GOF maps for the four 
metrics in a-d are shown in for the simulations (e) without and (f) with the GTL. No 
statistical model is included in these simulations. 

Figure 21. Effects of scaling the moment of the Chino Hills event, relative to that from 
Shao et al. (2012) of 1.58 1017 Nm. Comparisons of 0-1 Hz synthetics and data are 
shown. 

 

	
  



Tables: 
 
Table 1. Simulation Parameters 
	
  

Domain  
    Length 
    Width 
    Depth 
    Southwest Corner 
 

56 km (3500 nodes) 
40 km (2500 nodes) 
24 km (1500 nodes) 
33.7500, -118.3000 
 

Spatial Resolution  
    Maximum Frequency 
    Minimum Vs 
    Points per wavelength 
    Grid Discretization 
    Number of cells 
    Wall-clock time 
    Number of Processors 

2.5 Hz 
200 m/s 
5 
16 m 
13.125 billion 
6.5 hours 
13,125 
 

Temporal Resolution  
    Time Discretization 
    Simulation Time 
    Number of Timesteps 

0.001 s 
100.0 s 
100,000 
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Figure 21. 




